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Umim.

Results from a neural network study of full-scale
experimental XV-15 tilt-rotor noise are presented. An
XV-15 database, acquired during thie 1998 NASA Ames
80- by 120-Foot Wind Tunnel test, was used. This
existing database was acquired to establish the blade
vortex interaction (BVI) noise signature of a full-scale
tilt-rotor. The present study had the following three
objectives. The first objective was to assess, using
neural networks, the quality of the noise data. The
second objective was to obtain neural network
representations of the noise data and demonstrate their
sensitivity to test conditions. The third objective was
to obtain neural-network-based noise predictions, while
using a minimum amount of input data. Neural
networks were successfully used to assess the quality of
noise data. The quality of the experimental noise data
was found to be acceptable. Neural networks were
successfully used to represent the complete,
experimental tilt-rotor noise database. Accurate neural
network representations were obtained for the test-
condition-sensitivity cases. Neural networks were
successfully used to predict tilt-rotor noise using a
small amount of input data. Both the radial-basis
function (RBF) and the back-propagation types of neural
networks were used. For contour plots, the RBF neural
network was found preferable over the back-propagation
neural network.

Notation
A Rotor disc area, TR2, m2
BVI Blade vortex interaction
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BVISPL Blade vortex interaction sound pressure
level, 30th to 150th rotor harmonics,
a8

Crt Rotor thrust coefficient, thrust /

. PAVztip

MIMO Multiple-input, multiple-output

MISO . Multiple-input, single-output

PE Neural network processing element

R o Rotor radius, m

RBF Radial-basis function

Vv Wind tunnel airspeed, m/s

Viip Blade tip speed, QR, m/s

Og Rotor shaft angle, positive nose up, deg

1) Rotor advance ratio, Vcos 0g/(QR)

o Rotor solidity ratio

Q Rotor rotation speed, rad/sec

Introduction

Growing public sensitivity to rotorcraft noise has forced
the rotorcraft community (industry, government, and
academia) to be innovative in reducing rotorcraft
external noise (Ref. 1). Tilt-rotors are in a class in
themselves, and their acceptance by the public is a very
important and a much-awaited milestone. To facilitate
tilt-rotor noise reduction efforts, it is important to
develop an analytical capability that enables data quality
assessment and representation of experimental tilt-rotor
noise databases.
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The advantages of rotorcraft wind tunnel testing include
cost and safety benefits, as the rotorcraft model is

* rigorously evaluated prior to its first flight test. By

allowing significant operational variations to be
systematically introduced into the test conditions, wind
tunnel tests of experimental models provide valuable
data. Further, these wind tunnel test conditions can be
well outside the flight envelope. Thus, a wind tunnel
test can encompass a larger test envelope compared to a
flight test, making wind tunnel testing indispensable.

Rotorcraft noise measurement and prediction involve a
high level of complexity, and it is difficult at times to
even heuristically know the variation of the test data
with changes in operating conditions. Since the test
data trends may be new and without precedent, it
becomes difficult to expeditiously isolate "bad" data
points from the "good" points. As such, it is more
difficult to interpret the quality of the measured data and
the trends projected by wind tunnel tests.

This paper presents results from a neural network study
conducted to assess the quality of full-scale wind tunnel
tilt-rotor noise data, and also to represent such data.
These wind tunnel data were acquired from a test
performed in support of NASA's Short Haul Civil Tilt-
rotor (SH(CT)) program. In the present study, the use
of neural networks is justified because of their multi-
dimensional, nonlinear curve fitting characteristics. The
present work is considered to be a generic methodology
and is not specific to the presently considered tilt-rotor
configuration. Neural network studies on rotorcraft
performance and dynamics were initiated in the
Army/NASA Rotorcraft Division at NASA Ames
Research Center, as discussed in Refs. 2 to 7. The
experience gained from these neural network studies was
very useful in the present study on tilt-rotor noise.

Objectives
The present neural-network-based, full-scale XV-15 tilt-
rotor noise study had the following objectives:
1. Assessment of Test Data Quality Using Neural
"~ Networks

a. Conduct "coarse" data quality checks.

b. Conduct more involved "fine" data quality
checks.

2. Representation of Test Data Using Neural
ISQIWQ ﬁ

I

a. Demonstrate sensitivity of the noise to test
parameters, for example, the advance ratio and
separately, the thrust coefficient.
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b. Produce contour-plots using neural-network-
based results, and study the implications of
using half the available data for neural network
training purposes.

3. Prediction of Noise Using Neural Networks

Use neural networks to predict tilt-rotor noise
at a test condition not included in the neural
network training database. This includes the
following: modeling and prediction of multiple
noise variations using a minimum amount of
input data. The input data consist of the
defining test condition parameters and the
corresponding, unique "reference” noise curves.

ilt-

Full-scale XV-135 tilt-rotor noise test data for forward
flight conditions (Ref. 8) were analyzed in this paper.
As noted in Ref. 8, the overall objective in acquiring
the above data was to establish the blade vortex
interaction (BVT) noise signature of a full-scale tilt-
rotor. The wind tunnel testing approach was described
in Refs. 8 and 9. The 25-ft diameter right hand, three-
bladed tilt-rotor was installed on the NASA Ames Rotor
Test Apparatus and tested in the Ames 80- by 120-Foot
Wind Tunnel. The shaft angle was varied from -15 deg
(nose down) to +15 deg, from a vertical orientation.
The present study considers noise test data with a rotor
tip Mach number of 0.69.

Neural Network Approach

To accurately capture the required functional
dependencies, the neural network inputs must be
carefully selected and account for all important physical
traits that are specific to the application. The important
attributes of a neural network are its type (radial-basis
function network or back-propagation network, etc.) and
its complexity (i.e., the number of processing elements
(PEs) and the number of hidden layers). The present
overall neural network modeling approach (Refs. 2 to 7)
consists of first determining the best type of neural
network to be used and then simplifying the network as
much as is practical.

Determining the best type of neural network usually
involves selecting either a radial-basis function (RBF)
or a back-propagation network. Reference 10 notes that
the RBF network (Moody-Darken version) "can be used
in most situations in which one would consider using a
back-propagation network." In the present study, both
types of networks were used.

Simplifying the network involves reducing the number
of PEs and in a few cases, the number of hidden layers.
The number of PEs required depends on the specific
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application. The determination of the appropriate
number of PEs is done by starting with a minimum

~ number of PEs. Additional PEs are added to improve
neural network performance by reducing the RMS error
between the test data and the neural network predictions.
Typically, five PEs are initially added at each step in
this process. Adding two or three PEs at a time "fine-
tunes” the neural network.

If the correlation plot, comparing measured and predicted
values, shows only small deviations from the 45-deg
reference line, the neural network has produced an
acceptable representation of the subject test data. If the
plot shows points well off of the 45-deg line, the
presence of "bad" test data is assumed. A detailed
examination of the subject test database is then required
to identify the source(s) of the errors associated with
these test data.

The notation used in this paper to characterize a neural
network is described as follows. A neural network
architecture such as "4-25-5-1" refers to a neural
network with four inputs, twenty five processing
elements (PEs) in the first hidden layer, five PEs in the
second hidden layer, and one output.

Results

The application of neural networks to full-scale tilt-
rotor noise data was conducted using the neural
networks package NeuralWorks Pro II/PLUS (version
5.2) by NeuralWare (Ref. 10). The present neural
network RMS error was dimensionless and based on the
squares of the errors for each processing element (PE) in
the output layer. Generally, the RMS error was
characterized by a monotonic decrease with the number
of training iterations (Ref. 7). Also, any large
differences in the magnitudes of the neural network
variables were mitigated by appropriate scaling. In the
present application, the "cost function" used in
minimizing the RMS error had equally weighted
individual contributions.

The results from the neural network study using full-
scale XV-135 tilt-rotor noise data are presented below.
The noise was characterized using a BVISPL measure
(blade vortex interaction sound pressure level, 30th to
150th rotor harmonics, dB). For test conditions
involving traverse sweeps, the corresponding database
consisted of 96 points (measurements at 12 traverse
locations using 8 microphones). The largest
("complete") noise database considered in this study had
over 4000 data points (Ref. 8). The neural network

. inputs and output(s) depend on the specific application
under consideration and are given later.
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Neural Network Based Data Quality Assessment

An overall assessment of the quality of the wind tunnel
noise data was obtained by considering the complete
noise database. This complete database included over
4000 data points, which were used as training data for
the neural networks. The five wind tunnel test
parameters used as the neural network inputs were as
follows: advance ratio, [, shaft angle, Oy, thrust
coefficient ratio, C1/c, the microphone traverse
location, and the microphone position within the
traverse. Since the positions of the eight microphones
are fixed with respect to the traverse, an equivalent
"microphone number” can also be used.

Compared to the neural network tilt-rotor performance
application reported in Ref. 2, which involved
approximately 300 training data points, the present,
complete, experimental noise database was relatively
large. Thus, the present data quality assessment
procedure was split up into two steps. The first step
involved "coarse" correlation curve fits. The second.
step involved "fine" correlation curve fits, and involved
more complex networks and a larger number of training
iterations. In contrast to a representation type of
application, the "coarse" data quality assessment
application does not require the neural networks to
produce accurate curve fits. In the data quality
assessment examples that follow, the coarse and fine
error bands were +/- 4 dB and +/- 2 dB, respectively.

Coarse Data-Quality-Assessment The results from the
coarse correlation step are shown in Figs. 1 to 3.
Figure 1 shows the correlation plot from a MISO 5-25-
5-1 RBF neural network using the complete,
experimental noise database as the training database.
The RBF network was trained for 4 million iterations
with a final RMS error of 0.07. For the results shown
in Fig. 1, correlation points far away from the 45 deg
correlation line were judged as "bad" test data points. A
detailed examination of the noise database showed that
these "bad" points were from test point 25 of run 139.
The test parameters for this test condition were: | =
0.169, og = -15 deg, and C1/c = 0.06. The test Run

Log for run 139 notes the presence of “gusty south
winds affecting i and C1/6," which could adversely

affect data quality.

Figure 2 shows the coarse correlation plot obtained by
using a training database in which the eight microphone
measurements from test point 25 of run 139 (o5 =-15

deg) were omitted froin the complete training database.

Figure 2 shows the correlation plot from a MISO 5-25-
5-1 RBF neural network. The RBF network was trained
for 4 million iterations with a final RMS error of 0.06.
Figure 2 does not contain the "bad" points seen in Fig.
1.
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Figure 3 shows the coarse correlation plot obtained by
using a training database in which all o =-15 deg
points (152 in number) were omitted from the complete
training database. Figure 3 shows the correlation plot
from a MISO 5-25-5-1 RBF neural network. The RBF
network was trained for 4 million iterations with a final
RMS error of 0.08. Figure 2 and 3 were similar to each
other in that no outstanding “bad” points can be seen.
Thus, the "bad" data seen in Fig. 1 were-associated with
only one test condition, point 25 of run 139. Figures 1
to 3 demonstrated the ability of neural networks to
indicate noise data of poor quality.

Fine Data-Quality-Assessment Figure 4 shows the fine
correlation plot obtained by using the same database as
that used in Fig. 2. The eight microphone
measurements arising from test point 25 of run 139 (o
=-15 deg) were omitted from the complete training
database. Figure 4 shows the correlation plot from a
MISO 5-75-25-1 back-propagation neural network.

This more complex back-propagation network was
trained for 8 million iterations (double the number used
in the coarse correlation step) with a final RMS error of
0.02. Figure 4 showed that the quality of the noise data
was acceptable, to within a +/- 2 dB band. The
representation aspects of this result are discussed below.

Neural Network Representations

Complete, Test Database Representation The preceding
result, Fig. 4, also demonstrated the ability of neural
networks to represent the experimental noise data within
an acceptable level of accuracy (+/- 2 dB), and involved
over 4000 data points. The Contour Plots section
given later contains a comparison of the neural-network-
based contour based on the above “+/- 2 dB”
representation with the test data contour.

Sensitivity to Test Conditions Variations in advance
ratio and thrust coefficient were separately considered.
A near maximum BVI condition (4 = 0.170, og =3
deg, and C1/6 = 0.091) was taken as the "baseline" test

condition about which the variations were considered.

Forward Speed Variation. Three advance ratios were
considered (u = 0.125, 0.170, and 0.200), with ag = 3
deg and C1/6 = 0.091. The three neural network inputs
were the advance ratio, the traverse location, and the
microphone position. Figure 5 shows the correlation
plot from a MISO 3-15-5-1 back-propagation neural
network involving approximately 300 training data
points. The back-propagation network was trained for 1
million iterations with a final RMS error of 0.02. The
neural network representation was acceptable, to within
+/-1 dB.

4

‘with 4 = 0.170 and og =
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Thrust Variation. Four thfust coefficient ratios were
considered (Ct/c = 0.060, 0.075, 0.091, and 0.100),

3 deg. The three neural

network inputs were the thrust coefficient ratio, traverse
location, and the microphone location. Figure 6 shows
the correlation plot from a MISO 3-15-5-1 back-
propagation neural network involving approximately
400 training data points. The back-propagation network
was trained for 1 million iterations with a final RMS
error of 0.04. The neural network representation was
acceptable, to within +/-1 dB.

Contour Plots Neural-network-based contour plots were
obtained for at a tilt-rotor operating condition involving
maximum blade vortex interaction (u = 0.200, ag = 4
deg, and C1/6 = 0.075). The corresponding
experimental noise contour with 96 data points is
shown in Fig. 7 (the approximate rotor circle is also
shown in the figure). The contour points are identified
by their microphone number (1 to 8) and the traverse
location, Fig. 7. This case involved 96 neural network
training points. The microphone traverse location and
the microphone position were the two neural network
inputs. The BVISPL noise measure was the single
neural network output

Figure 8 shows the representation for the "100%" case
using a radial-basis function (RBF) neural network and
training data from all 12 traverse locations (involving
96 test points). Figure 8 shows the contour plot from a
MISO 2-28-7-1 RBF neural network. The RBF
network was trained for 4 million iterations with a final
RMS error of 0.02. This RBF neural network
representation is accurate. Also, equally good results
were obtained for the above "100%" case using a back-
propagation neural network. These back- propagatnon
results are not shown in this paper.

Figure 9 shows the representation for the "50%" case
using an RBF neural network and training data from six
traverse locations (involving 48 test points). The
"50%" case is important because halving the number of
traverse locations reduces the run time by approximately
50% per traverse sweep. The six traverse locations were
selected by starting out with the 275-inch traverse
location and-selecting every other location. Figure 9
shows the contour plot from a MISO 2-28-7-1 RBF
neural network. The RBF network was trained for
200,000 iterations with a final RMS error of 0.02. This
RBF neural network representation is accurate.

Figure 10 shows representation for the "50%" case
using a back-propagation neural network. Figure 10
shows the contour plot from a MISO 2-28-12-1 back-
propagation neural network. The back-propagation
network was trained for 800,000 iterations with a final
RMS error of 0.02. The secondary "hot spot” in Fig.
10 (120 to 121 dB range) has erroneously "spread out"
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near the O-inch traverse location. It erroneously involves
an additional microphone, No. 4. Consequently, the
RBF "50%" representation, Fig. 9, was closer to the
test data. The back-propagation neural network
representation was thus not-as accurate as the RBF
neural network representation. For contour plots, the
RBF network was preferable compared to the back-
propagation network.

It should be noted that Fig. 7 showed a +/- 1 dB-
resolution contour plot based on test data acquired at the
maximum BVI condition. The corresponding contour
plot extracted from the +/- 2 dB neural network
representation of the compliete database (that was
discussed earlier, Fig. 4) is shown in Fig. 11. The
neural-network-based contour obtained using the
complete, experimental database was considered to be
reasonable, and to have captured the essential "hot
spot,” Fig. 11.

Prediction of Noise

The objective in this part of the study was to use neural
networks to predict noise at a test condition not included
in the neural network training database. This is
illustrated as follows.

The presently considered, complete, experimental noise
database included 21 sets of data obtained from traverse
sweeps (corresponding to 21 test conditions). A single
test condition was presently defined by the following
three parameters: [, 05, and CT/6. The noise curve

based on an eight-microphone measurement acquired at
the 125-inch traverse location was taken as the
"reference curve." The three test condition parameters
and the eight "reference curve" noise values formed the
neural network inputs, thus uniquely "defining" the
complete noise map. In the present prediction study,
the subject neural network thus had 11 inputs. Noise
predictions (neural network outputs) were required at 11
traverse locations (i.e., at traverse locations other than
the reference traverse location). Thus, the subject neural
network with the eight-microphone setup had 88
outputs. The above definition of the subject "problem"
was direct and involved the smallest amount of input
data. Also, the present neural network tilt-rotor noise-
application with 11 inputs and 88 outputs, was a good
"test case." The “test case” results would determine
whether neural networks could efficiently model and
predict the full-scale tilt-rotor, multi-dimensional,
nonlinear noise variations.

An examination of the above 21 test conditions showed
that the following near maximum BVI test condition
with it = 0.170, o5 = 3 deg, and C1/0 = 0.091 was an
appropriate choice for a neural-network-based prediction
of the noise. This selection was based on the
availability of test data at p = 0.125, 0.170, and 0.200
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at the above shaft angle and thrust coefficient ratio. The
neural network training database consisted of noise data
from 20 test conditions, excluding the above selected
condition. The neural network model was obtained
from a MIMO 11-25-10-88 back-propagation neural
network. The back-propagation network was trained for
50,000 iterations with a final RMS error of 0.02.
Subsequently, it was found that the present neural
network predictions and the experimental noise data at
the selected test condition were within +/- 1 dB of each
other. The corresponding correlation plot is shown in
Fig. 12. This shows the ability of neural networks to
predict tilt-rotor noise.

nclusions

Specific conclusions from the present neural-network-
based data-quality-assessment and representation study
on full-scale experimental tilt-rotor noise data were as
follows:

1. Neural networks were successfully used to assess
the quality of noise data.

2. _Neural networks were successfully used to represent
the complete, experimental tilt-rotor noise database.

3. Neural networks were used to accurately represent
the noise data for the cases involving varying test
conditions ("test-condition-sensitivity").

4. Neural networks were successfully used to predict
tilt-rotor noise using a small amount of input data.

5. Both the radial-basis function (RBF) and the back-
propagation types of neural networks were used in
the present noise study. It was found that the RBF
neural network was preferable over the back-
propagation neural network for noise contour plots.
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Fig. 2. Coarse correlation, eight points (0 = -15 deg, point 25, run 139) omitted.
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